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Abstract

T;IE CALCULATION of acoustic power from
near-field measurements of piston-type irans-
ducers is described, and the results are com-
pared with those calculated from far-field
measurements under the same conditions. The
near-field measurements, which are required
when transducers are calibrated in small-vol-
ume pressure tanks, are of two types: axial-
pressure measurements, and radial-pressure
measurements in a plane near the active face.
It is shown that the axial-pressure method is
superior for reasons of simplicity in measure-
ment and calculation.
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Transducer Power Output Obtained from Near-Field
Pressure Amplitude and Phase Measurements

introduction

F;\R-FIELD measurements of transducer acoustic radiation are not possible under certain
conditions, When the transducer is calibrated in a small-volume pressure tank, for instance,
space limitations prevent far-field measurements, and near-field measurements must be made,
This report describes the calculation of acoustic power from near-field measurements of a mag~
netostrictive plane array in open water at the Ordnance Research Laboratory Calibration Station
at Black Moshannon, The criterion by which the near-field method is judged is that the acoustic
power obtained must be close to that calculated from the far-field directivity pattern,

Measurement of the Near-Field Axial- and Radial-Pressure Amplitudes
and Radial-Pressure Phase

Figure 1 shows the experimental arrangement used to determine the amplitude and phase of
the acoustic pressure., The projecior was a magnetostrictive plane array driven at 20.5 kc, and
the radius of the active area was 6,9 in. A probe hydrophone (Atlantic Research Corporation
BC-10) was moved along a diameter in a plane parallel to the face of the transducer at a distance
1 in, from the pc rubber surface, or 2 in, from the active elements. Note that 2.9 in, is the wave~
length of 20.5-kc sound in fresh water at 23 deg C - the conditions for the measurements. The
output of the probe was fed into a General Radio 1551-C sound level meter, which gave the relative

COUNTER
— SOUND
BALLANTINE ‘ —® | PHASE
OSCILLATOR VOLTMETER TRANSDUCER I'.‘EETVEE; METER

PROBE HYDROPHONE

Fig. 1 - Block Diagram of Equipment Required for Near-Field Pressure Measuremenis
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Fig. 2 - Calibration of General Radio Sound Level Meter 1551-C
with Atlantic Research Probe BC~-10

pressure amplitude. It was necessary to calibrate the probe and sound level meter system by
reference to a known pressure field to obtain the actual acoustic pressure. The calibration curve
is given in Fig. 2, The signal from the sound level meter was fed into the Ad Yu Type 202 Vector-
lyzer and compared with the signal from the oscillator to determine the phase of the pressure.
This led directly to the phase difference between the measured pressure values. For a plane wave,
the phase would be the same for all points.

The crosstalk was found to be from 30 to 35 db below the level measured across the active
face of the transducer. This value was obtained with the probe covered with Cell-Tite neoprene,
and indicates that the values measured to a distance of approximately 16 in. are well above back-~
ground noise,

For the axial-pressure measurements, the BC-10 probe was moved along the axis of the trans-
ducer from the pc rubber face to a distance of 84 in. No phase measurements were taken in this
case,

Radial-Pressure Data and Physical Interpretation

Figure 3 shows the corrected pressure amplitude in db relative to 1 ubar plotted against dis-
tance along the diameter. It can be seen that there are two peaks, near the edges of the active
area, approximately 2 db above a nearly constant level across the face. Furthermore, the fall-off
beyond the edges is approximately 12 to 13 db per doubling of distance. These results agree quali~-



tatively with the near-field pressure plots of Grossmann (1),* which show the near-field isobars
for a rigid piston with a diameter-to-wavelength ratio (D/\) of 3,5. In a plane at a distance of
nearly one wavelength from the piston, the pressure as a function of radial distance given by
Grosrmann shows one peak near each edge.

Figure 4 is a plot of the phase of the pressure vs radial distance as measured on the Vector-
lyzer. The range in phase values across the face is approximately 50 deg, or slightly greater than
A\/10. The phase changes rapidly beyond the edges.

The approximate agreement of the near-field pressure amplitude with Grossmann’s calculated
values (1) for a rigid circular piston with D/A ratio of 3.5 suggests that the radiation from the
ORL transducer approaches that of a rigid circular piston with a D/ ratio between 4 and 5 (actual
ratio is 13,75/2.9 = 4,8)%* in an infinite rigid baffle. The far-field directivity pattern also supports
this physical interpretation. For example, the beam width of the main lobe for a rigid circular
piston (D/x = 4.8) is nearly 30 deg, as shown in reference 3; and the number of side lobes, based
on the pressure distribution at the face, is predicted to be 10 (see reference 3). The measured
far-field directivity pattern showed that the main lobe was confined within an angle of approxi-
mately 30 deg and that the number of side lobes was 10 or 11,

Derivation of Approximate Expression for Acoustic Power
from Near-Field Radial-Pressure Measurements

The equation for intensity in a given direction at a point must be used to obtain an approximate
expression of the power:

T
_ Lp cos wt v cos (wt + ¢)dt
) T

I

where I is the intensity, T is the period, p is the pressure amplitude, v is the velocity amplitude,
w is 2»f, and ¢ is the phase angle between the pressure and velocity, If it can be assumed that
there is an equivalent average pressure amplitude (p) and velocity amplitude (v) over the plane at
2A/3 distance from the active face and that the phase {(¢) is nearly the same for all points in this
plane, then this intensity expression can be applied over all points in the measurement plane to
determine the power, Therefore,

T
Apv f cos wt cos (wt + ¢) dt 2
W=IA= = '

where W is the acoustic power, and A is the active face area. Since the value of the integral in
equation 2 divided by T is cos ¢/2,

Apvcos¢. 3

W= >

*Numbers in parentheses refer to References at the end of this report.

**Since the array is mounted in the end of a cylindrical housing, it might be thought that this ap-
proximates more nearly the case of a rigid circular piston in a tube (2). However, for large D/),
it can be seen that the radiation approaches that for the rigid circular piston in a rigid baffle.
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According to the definition for rms values, P, p/+/2 and Vime™ viv2 It Prms i8s designated by P
and vpmg by V,

W=APVcos ¢ . 4

Furthermore, the amplitude of the acoustic impedance, [Z|, is written as

2| =PV, 5
which allows W to be written as
2
P" A cos ¢ 6
Wz ——a— .
|Z|

But

IZI = (RE+XH)2 - R[l +(xz/Rz)]n/z= R+ tan? ¢)|/z

From trigonometric identities,

(14 1on® )2 = (sec® )2 = sec ¢ = I/cos ¢ .

Therefore, when {Z] = R/cos ¢ is substituted,

P?A cos®
W= ——¢- . 7
R
Since R is nearly pc,
Pa ]
W=—z—cos ¢ . 8

Since the average values for P and ¢ are used in the calculation, they are denoted with overlines.
Therefore,

Note, however, that some questionable assumptions had to be made to obtain this equation and,
hence, its usefulness is limited.

Calculation of Acoustic Power from Near-Field Radial-Pressure Data

The following values were used to calculate the power in equation 9: pC = 1,48 x 105 gm per
cm? sec, and A = area of active face of the transducer = 148 in.2 = 945 cm2, The total area is ob-
tained by addition of the areas associated with all the stacks making up the array. The average
pressure reading for the area in the measurement plane equal to the active area is substituted for



P . This will be an rms reading, since the sound level meter reads rms values. The average pres-
sure is obtained from

JER P 2w ar

B < , 10

and is based on the assumption that there is axial symmetry in the measurement plane (parallel
to the face), the pressure being dependent on the radial distance, r, only. The value for P was ob~-
tained from Fig. 5, in which r P(r) is plotted against r. There is some difficulty in knowing which
area of Fig. 5 to use. Note that there is a considerable rP product outside the active face but that
it also represents great changes in phase, which present a problem. A planimeter was used to
obtain the area under the curve, which corresponds to the integral in equation 10, The value ob-
tained was an average power of 3260 ubar. The only quantity left is ¢4 but, unfortunately, there
appears to be no very satisfactory way to measure the phase angle between the pressure and ve-
locity. An attempt (4) was made to measure pressure and velocity simultaneously, in the case of
Clapp and Firestone’'s acoustic wattmeter, but this was not entirely satisfactory.

A rather crude approximation would be to neglect the cosz¢term (that is, to let ¢ = 0) and to
say, at least for an order-of-magnitude calculation, that W is given by

=<t4
(PrA | 11
pC

W

When the values for these quantities (P = 3260 ubor and A = 945 cm?2) are substituted and converted
to mks units,

?x 945 x 1077 -
w3260 X945 X 10 e~ 6.8 %10 wotts . 12

148 X10°

e = FIRST SET OF DATA
x = SECOND SET OF DATA
err P{r) dr

CIRCLE AREA

P(r) =

tP(r) x 103cgs units)

i D S T SN N SN S SN S o
2 3 4 S5 6 7 8 9 ©O N 12 13 4 15 1

RADIUS (in)

Fig. 5 - Plot of rP(r) x 10-3 vs Radius at 2\/3 from Active Face



To check this near-field value, a far-field power value was obtained from far-field measure~
ments, The procedure used was to plot the directivity pattern on Kendig-Mueser paper (5) and to
measure the area under the curve by meansof a planimeter. This area is related to the directivity
factor (D, F,)., The pressure on the axis was also measured. Then the following expression for
the D, F, was used:

Pz/pc

DF- \
W/4nx: 13

where P is the axial pressure at a distance x, and W is the acoustic power, The value obtained
with a D, F. of 220 from a Kendig-Mueser plot, a distance (x) of 72 in., and an axial pressure (P)
of 2200 ubor was W =6,0 x 103 watts. Therefore, the difference in decibels between the near-
field and far-field powers is 0.5 db, since 10 log 6.8/6.0 = 10 log 1.13 =~ 0,5 db,

This method is not completely satisfactory because of the problems involved in deriving W,
measuring ¢, and determining the area through which the radiation passes. However, it is inter-
esting to note that this method has some merit if it is interpreted correctly. Later it will be shown
that the pressure on the axis varies between maxima and minima and that Pp,54 = 6095 ubor. Now,
the pressure used to obtain the near-field power value was 3260 wbor ® B, /2, within experimental
and graphical error. Therefore, the power expression in equation 12 is nearly W = (P o 2% A/pc ,
where A =the area of the piston. This is the expression for a plane wave of pressure Pmax/ 2
confined to an area equal to the area of the piston., This result has been noted in the work of
Simmons and Urick (6) and that of Trott (7) on near-field calibrations., This result means that
equation 11 is an approximate relationship for obtaining the power, In equation 11, average power
is obtained by taking a graphical average, over an area equal to that of the transducer, of the
individual pressures measured very near the face, The piston area (A) is equal to the area of the
transducer.

Derivation of Expression for Acoustic Power from Axial-Pressure Measurements

If the radiation can be considered as approximately that of a circular piston in an infinite rigid
baffle, then the axial pressure will fluctuate in the near field between maxima and minima, as
shown in reference 3 (Fig. 3.10), and as obtained from measurements plotted in Fig. 6, The
maximum pressure can then be measured and used in the power calculations, as will be shown.

The following expression for the D, F. wasg used to calculate the power (W):

OF-: P(x) fpc
' w/4 rx!

)

or

4wx® Pz(x)

W= :
pcDF 14

Here, P is the pressure at a distance x along the axis of the transducer. The D, F. and P(x) must
be known to evaluate this expression.

If the radiation can be considered as nearly that of a rigid circular piston in an infinite rigid
baffle, as indicated before, then D, F. is as given by reference 8 (p. 184):

e 2
OF- Ka
1 =[29, 20}/ 240

15
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If ka is large compared with 1, 9 (2ka) is very small, and
OF =k*a®, or ¥*D%/4 , 16

where D is the diameter of the piston.
The axial-pressure expression (see references 9 and 3) for a circular piston is used to cal-
culate P(x):

P(x) = B sin 7“- [(%2_ + xz)v2 - x] . 17

The pressure P(x) can be evaluated, after Py ay is measured, and used directly in equation 14 to
obtain W; or, if x is large compared with D, the following approximation can be made by expansion
in a binomial series:

1
8x i28x* 8

For x >> Dz, the argument of the sine becomes D2/8x, and substitution in equation 17 gives

P(X) = Ry S0 5 % 19
Since the argument is small, the sine can be replaced by its argument to give

2
Plx) = Fog .22 ’ 20



The values for D, F, and P(x) can now be substituted in equation 14 to obtain the approximate
power expression involving the axial pressure., Therefore,

am’ R K D*

—s | 21
pC (-‘54—0-) 256x°
or, simplifying,
7Py D’ Bg2f w0 22
i 16p¢ e 4

This equation shows that the power radiated by a circular piston is given by an intensity of the
form Pz/pc (where P = Pmax/ 2) over an area equal to the area of the piston. Therefore, an equiva=-
lent physical situation for the acoustic power radiated from the magnetostrictive array is that of
a plane wave of pressure Py,55/2 confined to an area equal to that of the piston. This was found to
be the result when the power was calculated from the near-field pressure data,

Calculation of Acoustic Power from Near-Field Axial-Pressure Data

The calculation of power from near-field axial-pressure data can be divided into two distinct
cases: calculation of the power when the radius of the equivalent circular piston is known; and
calculation of the power when the radius of the equivalent circular piston is unknown, The first
case is the simpler of the two, being merely a matter of substitution in equation 22, The second
case involves the concept of effective radius.

ACOUSTIC POWER WHEN RADIUS OF THE EQUIVALENT CIRCULAR PISTON IS KNOWN

When the radiation characteristics of the transducer are nearly equivalent to those of a rigid
circular piston in an infinite rigid baffle, the power is obtained by substitution in equation 22,
Substitution leads to W = 6.0 x 107° watts. Note that 6095 ubor is the P53 (obtained from Fig. 6,
the pressure-vs-distance curve), and D = 13,75 in. is the diameter corresponding to an area of
148 in.2 There is no difference between this power and the far-field power {6.0 x 10~3 watts). This
is fortuitous since the error in each power value might be as much as 5 to 10 per cent. In this case
and the following case, it would be well to check the value for D, F. by far-field measurements in
the free field, if possible.

ACOUSTIC POWER WHEN RADIUS OF THE EQUIVALENT CIRCULAR PISTON IS UNKNOWN
When the radiation pattern is known to be approximately that of a circular piston of unknown
radius (for example, in an approximately circular array of elements), it is helpful to use the con-

cept of an effective radius. This effective radius can be obtained from the expression for the po-
sition of the maxima in the axial pressure given in reference 3 (p. 69):

ag® - X em + 1P

23
4x(2m +1)
Here, m = 0,1,2,..... For the first maximum (one with the largest x), m = 0. Therefore,
X .= _‘i_'_i_ :
m0 4 24
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or, for the effective radius a,

2 4x,.0r +X

o
[l

When the measured value from Fig, 6 (17 in.) is substituted for Xmag. the effective radius is
7.2 in. In this case, it means the effective radius is 7.2 in, as compared to 6.9 in. from measure-
ments of the stack dimensions and spacing. Since the power depends on 32, the power computed
by equation 22 is (7.2)2/(6.9)2 x 6.0 x 10~3, or 6,6 x 10=3 watts.

Since the D, F. for the circular piston of 7.2-in. equivalent radius is kzaz, a value of 240 is
obtained. This is about 10 per cent higher than the value of 220 obtained from the far-field data,

When the maximum sound pressure is measured along the axis of the transducer, it is impor-
tant that the probe be accurately moved along the axis. Figure 7 shows the variation of sound pres-
sure with perpendicular distance from the axis when the sound pressure is measured 16 in. from
the face of the transducer (17 in. from the active faces of the stacks), the range at which the maxi-
mum occurs in Fig, 6,

Conclusions

The data obtained from the two sets of near-field measurements indicate that the radiation of
the array is similar to that of a rigid circular piston in an infinite rigid baffle. The D/A ratio was
determined to be nearly 4.8. The calculation of power by means of axial~-pressure measurements
was found to be superior to the radial-pressure method because (a) it is very difficult to measure
the phase angle between the pressure and velocity at each point; (b) it is easier to evaluate the
pressure, Pp,.y, for the axial-pressure method rather than to obtain an average for the radial-
pressure measurements; and (c) some rather limiting assumptions had to be made in the theo-
retical development of the radial-pressure method, For the axial-pressure function, the approxi-

10



mation of the acoustic power is that for a plane wave intensity associated with P, /2 through an
area equal to that of the piston. A similar result was obtained when the radial-pressure method
was used.

It should be possible to extend the axial-pressure method to include rectangular pistons since
this case has been solved by Stenzel (10), Stenzel presents the analytical expression for the axial
pressure and the corresponding curves,

A cylindrical tank with absorptive lining and an adjustable probe hydrophone could be built for
transducer power measurements at high hydrostatic pressures. The probe hydrophone could be
mounted on a rod and moved along the axis of the tank between the hydrophone and the opposite
end of the tank., I reflections from the walls are excessive, a pulse method could be used for the
measurements. A study of the change in axial-pressure characteristics as the hydrostatic pres-
sure is varied could lead to important conclusions concerning transducer performance.

11
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